Grenzwerte von Reihen Berechnen

Geometrische Reihe

Eine einfache Methode den Grenzwert einer Reihe zu bestimmen, in der ein Exponent gegen unendlich läuft, ist die geometrische Reihe. Bei einer geometrischen Reihe ist der Quotient q zweier benachbarter Folgeglieder konstant.  Das a steht einfach für irgendeinen Rest, der konstant ist, also beispielsweise eine Zahl wie 1. Für |q|<1 gilt

 

Bei Startwert 1 und einem Quotienten von 1/2 ergibt sich die geometrische Reihe: 1, 1 + 1/2, 1 + 1/2 + 1/4, 1 + 1/2 + 1/4 + 1/8, …, also 1, 3/2, 7/4, 15/8, … mit dem Grenzwert 1/(1-1/2). So lässt sich der Grenzwert einer Reihe leicht bestimmen.