Eine einfache Methode den Grenzwert einer Reihe zu bestimmen, in der ein Exponent gegen unendlich läuft, ist die geometrische Reihe. Bei einer geometrischen Reihe ist der Quotient q zweier
benachbarter Folgeglieder konstant. Das a steht einfach für irgendeinen Rest, der konstant ist, also beispielsweise eine Zahl wie 1. Für |q|<1 gilt
Bei Startwert 1 und einem Quotienten von 1/2 ergibt sich die geometrische Reihe: 1, 1 + 1/2, 1 + 1/2 + 1/4, 1 + 1/2 + 1/4 + 1/8, …, also 1, 3/2, 7/4, 15/8, … mit dem Grenzwert 1/(1-1/2). So lässt
sich der Grenzwert einer Reihe leicht bestimmen.