Logarithmusfunktion - Erklärung und Eigenschaften

Die Logarithmusfunktion ist die Umkehrfunktion der Exponentialfunktion und sieht folgendermaßen aus (Hier geht´s zum Artikel über den Logarithmus):

 

y=logax

  • Ist a zwischen 0 und 1, ist es eine fallende Kurve
  • Ist a größer als 1, so ist es eine steigende Kurve
Beispiel Logarithmusfunktionen gezeichnet im Koordinatensystem

Hier seht ihr zwei Logarithmusfunktionen, dabei ist die Grüne  y=log2x, die rote ist y=log5x und die blaue ist y=log0,5x.

 

Wie ihr seht, steigt der Graph bei größerer Basis langsamer als mit einer kleineren. Auch gut zu erkennen ist, dass die Graphen nicht im negativen liegen. 


Dabei dürfen für a alle positiven Zahlen außer die 1 eingesetzt werden und für x alle positiven Zahlen. Wieso das so ist, erkennt man besser daran, wie der Logarithmus definiert ist (Hier mehr zum Logarithmus):

 

y=logax  ⇒  ay=x

 

Wie ihr seht, könnt ihr mit dem Logarithmus ausrechnen "a hoch was ergibt x?".

Weitere Eigenschaften

  • y-Achse ist eine senkrechte Asymptote
  • Gemeinsamer Punkt bei (1|0)

Definitions- und Wertemenge

Mehr zum Thema Definitions- und Wertemenge

  • Definitionsbereich: D=+
  • Wertemenge: W=ℝ

Nullstelle

Mehr zum Thema Nullstellen.

  • Die Nullstelle der Logarithmusfunktion ist, falls sie nicht verschoben wurde, bei x=1.

Monotonie

Mehr zur Monotonie.

  • die Logarithmusfunktion ist für 0<a<1 streng monoton fallend
  • und für a>1 streng monoton steigend.

Grenzwerte

Mehr zu Grenzwerten.

  • Für 0<a<1, sind die Grenzwerte:
    • für x gegen 0 -> +Unendlich
    • für x gegen +Unendlich -> -Unendlich
  • Für 0<a<1, sind die Grenzwerte:
    • für x gegen 0 -> -Unendlich
    • für x gegen +Unendlich -> +Unendlich

Passende Themen