Sollt ihr die Fläche unter einem Graphen mit gegebenen Grenzen berechnen, müsst ihr dies mit dem bestimmten Integral machen. Ist der Graph der Funktion (NICHT Stammfunktion) zwischen den gegebenen Grenzen nur über oder unter der x-Achse?
Sollt ihr die Fläche berechnen, müsst ihr jeweils bis zur Nullstelle einzeln integrieren, wenn zwischen End- und Anfangspunkt die Fläche mal über und mal unter der x-Achse liegt. Das liegt daran, da sonst die Fläche von unter der x-Achse von der, die über der x-Achse liegt, abgezogen wird, da die Fläche unter der x-Achse beim Integral immer negativ ist und die über der x-Achse positiv. In diesem Beispiel (Bild) würde sonst 0 für die Fläche rauskommen, da die Fläche unter der x-Achse genauso groß ist, wie die darüber. Also erst die Fläche unter der x-Achse ausrechnen, danach die, die darüberliegt und dann beide Beträge addieren, so erhält man das richtige Ergebnis.
Ihr möchtet die Fläche zwischen dieser Funktion und der x-Achse von -2 bis 2 wissen.
Hier seht ihr den Graphen und die Fläche dieser Funktion:
In Rot seht ihr die Fläche, die gerade berechnet wurde. Sie beträgt 16 FE (Flächeneinheiten).
Ihr möchtet die Fläche dieser Funktion von -2 bis 2 berechnen.
So sieht die Funktion und die Fläche unter dem Graphen vom Beispiel aus. Anfangspunkt ist grün, Nullstelle rot und Endpunkt blau. Die Fläche unter der xAchse ist Lila (wie das Ergebnis beim Rechnen) und über der x-Achse orange (ebenfalls wie das Ergebnis).
Wenn ihr dieses Thema weiter vertiefen und üben möchtet, dann haben wir kostenlose Arbeitsblätter mit Aufgaben für euch. Ihr findet sie unter diesem Button:
In unserem Shop findet ihr passende Lernmaterialien, z. B. Trainingsbücher mit Übungsaufgaben. Mit jedem Kauf unterstützt ihr den Betrieb unserer Webseite.